Sonar Technologies

Technology Evolution

		1	
WWII	detect fish in water	first applications	Sund, Tester, Balls
1946	broadband sonar	deep scattering layer	Duvall, Christensen
1946,	sonar	school volume, shape	O.R. Smith, P.E. Smith
1960			
??	Time Varied Gain	standard attenuation	
		compensation	
1968	multi-frequency	species identification	McNaught
1970's	TS-length relationships	convert relative to numeric	Love, Nakken, McCartney, Olsen,
		densities	Stubbs
1977	inverse approach	size-based abundance	Holliday
		estimates	
1979	species identification	demonstrated potential	Deuser et al. Giryn et al.
1983	standard calibration	enabled data comparison	Foote et al.
1974 -	dual and splitbeam	in situ echo amplitude	Ehrenberg
1980	transducers	measurement	
1989	multibeam sonar	school shape, volume	Misund
2002-2015	autonomous	Increased applications	ASL, Kongsberg
	echosounder		
2005	broadband, multibeam	school shape, volume,	Simrad
	sonar	abundance estimates, identity	
2007	autonomous platform	long temporal/large range data	Liquid Robotics
2010-2013	broadband echosounder	potential species	Edgetech, Kongsberg
		discrimination	

Then...

G.O. Sars 1969

And Now

G.O. Sars III 2004

Trend: Increased Information

Obtained using:

- 1. Increased Frequency Range
 - narrowband discrete frequencies
 - broadband
- 2. Increased Swath
 - multibeam
 - other sonars
- 3. Increased Resolution
 - acoustic imaging
- 4. Integration with Other Technologies
 - sensors
 - platforms

1. Increase Frequency Range

Multifrequency echosounders: multiple, discrete frequency (i.e. narrowband) transducers

Broadband echosounders: single or limited number of wideband transducers

Frequency-dependent backscatter (aka Frequency Response)

Multiple frequencies enables inverse approach (but best over Resonance peaks)

Multifrequency: Zooplankton Acoustics

Example: Multiple Acoustic Profiling System (MAPS)

- 21 transducers
- frequency range 0.1
 to 10 MHz
- Echo volume 0.01 m³ at 1-2 m
- temperature, depth, salinity, fluorometry, and pump samples

Pieper et al. 1990

Multifrequency Fish Measures

38 kHz

Mixed

Kloser et al. 2003

Broadband Sonars

- 2 octaves 20 to 80 kHz
- combine rings to generate pulse
- low 20 40 kHz
- medium 40 60 kHz
- high 60 80 kHz

low, $\tau = 1$ ms

high, $\tau = 10 \text{ ms}$

Zakharia et al. 1996

Broadband Sonars

Use frequency spectra as characteristic signature

Increased Frequency Range Applications

- target discrimination
- target classification
- species identification

Data Attributes: frequency-dependent backscatter, multiple frequencies enables inverse approach, frequency domain analyses

2. Increase Swath

Multibeam echosounder/sonar: single frequency, multiple narrow transceivers in single transducer

SONAR systems: initially qualitative, visual tools transferred from military and commercial fishing, currently developed to extract water column and/or bathymetric data for scientific use

Sonar

Sound Navigation And Ranging

- fixed swath
- sector-scanning
- omni-directional

Volume Ensonified and Swath Comparison

Multibeam Sonar Equipment

Konsberg EM 2040

- 120° 180° swath
- 0.5° or 1° x 1° beamwidth
- 200, 300, 400 kHz chirp

Reson Seabat 7125 (AUV)

- 128° swath
- 1.1° x 2.2°
- 200 or 400 kHz

Bathymetric Applications

Water Column Application

- sardine school (Sardinella aurita)
- vol. 2260 m³, surface area 5796 m², length 41.6 m, width 16.7 m, height 14.9 m

P. Fernandes

Quantitative Water Column: ME/MS 70

ME 70 Transducer

Increased Swath Applications

- target volume description (e.g. schools)
- target classification, discrimination
- target behavior (e.g. hydro dam passage)
- target abundance

Data Attributes: angle-dependent backscatter, volume insonification

3. Increased Resolution

Fish TV (~1997)

J. Jaffe

Multibeam Side-Scan Sonar

- -300 m swath at 150 m depth
- 455 kHz

Mackerel school

Blueview Sonar

www.blueview.com

2-D Imaging Sonar

P900- 45 to 130 sonar heads

- 45 to 130° view (1 x 20° beam width)
- 256 to 768 beams, spaced 0.18°
- frequency 900 kHz
- size 11.3 x 5 inches

3-D Mechanical Scanning Sonar

BV-5000

- LIDAR (laser) system
- 360° pan x 180° tilt
- point cloud

MB1350-45, 2250-45

- -1.35 to 2.25 MHz sonar
- 45° x 1° field of view
- 256 beams, 0.18° spacing

Dual Frequency Identification Sonar: DIDSON

multibeam acoustic imaging sonar

- 900 kHz 1.8 MHz
- 96 beams
- 0.3° horizontal x 11° vertical

Multibeam Imaging Sonar Applications

- near optical verification of targets (species identification)
- potential tracking of targets (harbor security)
- autonomous underwater inspection (inhospitable locations)

Data Attributes: high frequency, high resolution, low volume or range, approaching optical image

4. Integration with Other Sensors

- specialized acoustic or other samplers
- not typically used in large scale abundance surveys
- data streams integrated with acoustic sensor data

Optical Instruments

Video Plankton Recorder (VPR)

Optical Plankton Counter (OPC)

Light Detection And Ranging (LIDAR)

Integrated Alternate Platforms

- increase the number and type of sampling tools
- increase the resolution and range of sampling
- increase the number of trophic levels sampled
- reduce radiated platform noise

Early Application: BioMapper II

P. Wiebe

Deepwater Towbody

H.P. Knudson

Early Application: AutoSub

120 kHz

38 kHz

Autonomous Underwater Vehicle (AUV)

- acoustically quiet
- un-manned, docking station
- additional sampling packages
- slow speeds but near interfaces (surface, bottom, ice)

Acoustic Buoy

- free floating or moored at depth
- echosounder, compass, inclinometer, depth sensor
- additional scientific payload

Age-0 cod and haddock near surface

www.metas.no

Acoustic Probe

- autonomous echosounders
- 38, 70, 120, 200, 333 kHz
- motorized transducer platform
- calibrations, short range TS

Wave Glider + echosounder

liquidr.com

Temporal Platforms

Acoustic Lander, IMR

battery powered, autonomous

DEIMOS, UW

land powered, cabled observatory

Acoustic Lander Echogram

OR Godoe

DEIMOS Data

Autonomous Acoustic Recorders

Single and multifrequency configurations

ASL

Sato et al. 2012

OOI: cabled & uncabled Ocean Observatory

Stable Platform?

Active Acoustic Tags

Orientation tag

Hydrophone array

POST: Pacific Ocean Shelf Tracking

Juvenile salmon remain on-shelf for many months

- Red circles: where salmon are caught
- Yellow crosses: zero catches

LISTENING CURTAINS

TOPP: Tagging of Pacific Pelagics

Salmon Sharks as temperature probes

B. Block

Integrated Ocean Sensing

LEO 15: Long-term Ecosystem Observatory (2000-2001)

Technology Convergence?

EK 80: narrowband and wideband echosounder

- Split beam or wideband (4 channels)
- High resolution

- marine
- chirp 160-240 kHz
- plankton layers
- herring schools

- freshwater
- chirp 160-260 kHz
- larval fish bottom
- schooling fish, methane

Sampling Gear Strengths/Weaknesses

Nets Pumps Acoustics Optics

Physical Sample

High Tow Velocity

Rapid Processing

Rare Taxa

Fragile Taxa

Fine Vertical Resolution

Fine Horizontal Resolution

High Taxonomic Resolution

Relative Cost

Low Avoidance

courtesy M. Benfield